0 of 50 Questions completed
Questions:
You have already completed the quiz before. Hence you can not start it again.
Quiz is loading…
You must sign in or sign up to start the quiz.
You must first complete the following:
0 of 50 Questions answered correctly
Your time:
Time has elapsed
You have reached 0 of 0 point(s), (0)
Earned Point(s): 0 of 0, (0)
0 Essay(s) Pending (Possible Point(s): 0)
Match List I with List II
\(
\begin{array}{|l|l|l|l|}
\hline & \text { List I } & & \text { List II } \\
\hline \text { A } & \text { Plank’s constant }(h) & \text { I. } & {\left[M^1 L^2 T^{-2}\right]} \\
\hline \text { B } & \text { stopping potential }(Vs) & \text { II. } & {\left[M^1 L^1 T^{-1}\right]} \\
\hline \text { C } & \text { Work function }(\phi) & \text { III. } & {\left[M^1 L^2 T^{-1}\right]} \\
\hline \text { D } & \text { Momentum }(p) & \text { IV } & {\left[M^1 L^2 T^{-3} A^{-1}\right]} \\
\hline
\end{array}
\)
(A) Planck’s constant
\(
\begin{aligned}
& \mathrm{h} \nu=\mathrm{E} \\
& \mathrm{h}=\frac{\mathrm{E}}{\mathrm{\nu}}=\frac{\mathrm{M}^1 \mathrm{~L}^2 \mathrm{~T}^{-2}}{\mathrm{~T}^{-1}}=\mathrm{M}^1 \mathrm{~L}^2 \mathrm{~T}^{-1}
\end{aligned}
\)
(B)
\(
\begin{aligned}
& E=q V_s \\
& V_s=\frac{E}{q}=\frac{M^1 L^2 T^{-2}}{A^1 T^1}=M^1 L^2 T^{-3} A^{-1}
\end{aligned}
\)
(C)
\(
\begin{aligned}
& \phi(\text { work function })=\text { energy } \\
& =\mathrm{M}^1 \mathrm{~L}^2 \mathrm{~T}^{-2}
\end{aligned}
\)
(D)
\(
\begin{aligned}
& \text { Momentum }(p)=\text { F x time } \\
& =M^1 L^1 T^{-2} T^1 \\
& =M^1 L^1 T^{-1}
\end{aligned}
\)
The frequency \((\nu)\) of an oscillating liquid drop may depend upon radius (r) of the drop, density \((\rho)\) of liquid and the surface tension (s) of the liquid as : \(v=r^a \rho^b s^c\). The values of \(a, b\) and \(c\) respectively are
\(
\begin{aligned}
& {\left[\mathrm{T}^{-1}\right]=\left[\mathrm{L}^1\right]^{\mathrm{a}}\left[\mathrm{M}^1 \mathrm{~L}^{-3}\right]^{\mathrm{b}}\left[\frac{\mathrm{MLT}^{-2}}{\mathrm{~L}}\right]^{\mathrm{c}}} \\
& \Rightarrow \mathrm{T}^{-1}=\mathrm{M}^{\mathrm{b}+\mathrm{c}} \cdot \mathrm{L}^{\mathrm{a}-3 \mathrm{~b}} \cdot \mathrm{T}^{-2 \mathrm{c}} \\
& \mathrm{c}=\frac{1}{2}, \mathrm{~b}=-\frac{1}{2}, \quad \mathrm{a}-3 \mathrm{~b}=0 \\
& \mathrm{a}+\frac{3}{2}=0 \Rightarrow \mathrm{a}=-\frac{3}{2}
\end{aligned}
\)
Match List I with List II
\(
\begin{array}{|l|l|l|l|}
\hline & \text { List I } & & \text { List II } \\
\hline \text { A } & \text { Surface Tension } & \text { I. } & {\mathrm{Kg} \mathrm{~m}^{-1} \mathrm{~s}^{-1}} \\
\hline \text { B } & \text { Pressure } & \text { II. } & {\mathrm{Kg} \mathrm{~ms}^{-1}} \\
\hline \text { C } & \text { Viscocity } & \text { III. } & {\mathrm{Kg} \mathrm{~m}^{-1} \mathrm{~s}^{-2}} \\
\hline \text { D } & \text { Impulse } & \text { IV } & {\mathrm{Kg} \mathrm{~s}^{-2}} \\
\hline
\end{array}
\)
Choose the correct answer from the options given below:
(A) Surface Tension
\(
\begin{aligned}
=\frac{\mathrm{F}}{\ell} & =\frac{\mathrm{MLT}^{-2}}{\mathrm{~L}}=\mathrm{ML}^{-1} \mathrm{~T}^{-2} \\
& =\mathrm{Kg} \mathrm{s}^{-2}(\mathrm{IV})
\end{aligned}
\)
\(
\begin{aligned}
\text { (B) Pressure }=\frac{\mathrm{F}}{\mathrm{A}} & =\frac{\mathrm{MLT}^{-2}}{\mathrm{~L}^2} \\
& =\mathrm{kg} \mathrm{m}^{-1} \mathrm{~s}^{-2} \text { (III) }
\end{aligned}
\)
\(
\begin{aligned}
& \text { (C) Viscosity }==\frac{F}{A\left(\frac{d V}{d z}\right)}=\frac{\text { MLT }^{-2}}{L^2\left(\frac{LT{-1}}{L}\right)} \\
& =\mathrm{ML}^{-1} \mathrm{~T}^{-1}=\mathrm{kg} \mathrm{m}^{-1} \mathrm{~s}^{-1}(\mathrm{I}) \\
& \text { (D) Impulse }=\int \mathrm{Fdt}=\mathrm{MLT}^{-2} \times \mathrm{T} \\
& =\mathrm{MLT}^{-1}=\mathrm{Kgms}^{-1} \text { (II) } \\
&
\end{aligned}
\)
Match List I with List II
\(
\begin{array}{|l|l|l|l|}
\hline & \text { List I } & & \text { List II } \\
\hline \text { A } & \text { Young’s Modulus } (\mathrm{Y}) & \text { I. } & {\left[\mathrm{M} \mathrm{L}^{-1} \mathrm{~T}^{-1}\right]} \\
\hline \text { B } & \text { Co-efficient of Viscosity } (\eta) & \text { II. } & {\left[\mathrm{M} \mathrm{L}^2 \mathrm{~T}^{-1}\right]} \\
\hline \text { C } & \text { Planck’s Constant } (\mathrm{h}) & \text { III. } & {\left[\mathrm{M} \mathrm{L}^{-1} \mathrm{~T}^{-2}\right]} \\
\hline \text { D } & \text { Work Function } & (\phi) \text { IV } & {\left[\mathrm{M} \mathrm{L}^2 \mathrm{~T}^{-2}\right]} \\
\hline
\end{array}
\)
Choose the correct answer from the options given below:
\(
\begin{aligned}
& \mathrm{Y}=\frac{\text { Stress }}{\text { Strain }}=\frac{\mathrm{F} / \mathrm{A}}{\Delta \ell / \ell}=\frac{\left[\mathrm{MLT}^{-2}\right]}{\left[\mathrm{L}^2\right]}=\left[\mathrm{ML}^{-1} \mathrm{~T}^{-2}\right] \\
& \mathrm{F}=6 \pi \eta \mathrm{rv} \Rightarrow \eta=\frac{\mathrm{F}}{6 \pi \mathrm{rv}} \\
& {[\eta]=\frac{\left[\mathrm{MLT}^{-2}\right]}{[\mathrm{L}]\left[\mathrm{LT}^{-1}\right]}=\left[\mathrm{ML}^{-1} \mathrm{~T}^{-1}\right]} \\
& \mathrm{E}=\mathrm{h} \nu \Rightarrow \mathrm{h}=\frac{\mathrm{E}}{v}=\frac{\left[\mathrm{ML}^2 \mathrm{~T}^{-2}\right]}{\left[\mathrm{T}^{-1}\right]}=\left[\mathrm{ML}^2 \mathrm{~T}^{-1}\right]
\end{aligned}
\)
Work function has same dimension as that of energy, so \([\phi]=\left[\mathrm{ML}^2 \mathrm{~T}^{-2}\right]\)
Match List I with List II :
\(
\begin{array}{|l|l|}
\hline \begin{array}{l}
\text { List-I } \\
\text { (Physical Quantity) }
\end{array} & \begin{array}{l}
\text { List-II } \\
\text { (Dimensional Formula) }
\end{array} \\
\hline \text { A. Pressure gradient } & \mathrm{I. }\left[\mathrm{M}^0 \mathrm{~L}^2 \mathrm{~T}^{-2}\right] \\
\hline \text { B. Energy density } & \text { II. }\left[\mathrm{M}^1 \mathrm{~L}^{-1} \mathrm{~T}^{-2}\right] \\
\hline \text { C. Electric Field } & \text { III. }\left[\mathrm{M}^1 \mathrm{~L}^{-2} \mathrm{~T}^{-2}\right] \\
\hline \text { D. Latent heat } & \mathrm{IV. }\left[\mathrm{M}^1 \mathrm{~L}^1 \mathrm{~T}^{-3} \mathrm{~A}^{-1}\right] \\
\hline
\end{array}
\)
Choose the correct answer from the options given below:
\(
\begin{aligned}
& \text { Pressure gradient }=\frac{\mathrm{dp}}{\mathrm{dx}}=\frac{\left[\mathrm{ML}^{-1} \mathrm{~T}^{-2}\right]}{[\mathrm{L}]} \\
& =\left[\mathrm{M}^1 \mathrm{~L}^{-2} \mathrm{~T}^{-2}\right] \\
& \text { Energy density }=\frac{\text { energy }}{\text { volume }}=\frac{\left[\mathrm{ML}^2 \mathrm{~T}^{-2}\right]}{\left[\mathrm{L}^3\right]} \\
& =\left[\mathrm{M}^1 \mathrm{~L}^{-1} \mathrm{~T}^{-2}\right] \\
& \text { Electric field }=\frac{\text { Force }}{\text { charge }}=\frac{\left[\mathrm{MLT}^{-2}\right]}{[\mathrm{A} . \mathrm{T}]} \\
& =\left[\mathrm{M}^1 \mathrm{~L}^1 \mathrm{~T}^{-3} \mathrm{~A}^{-1}\right] \\
& \text { Latent heat }=\frac{\text { heat }}{\text { mass }}=\frac{\left[\mathrm{ML}^2 \mathrm{~T}^{-2}\right]}{[\mathrm{M}]} \\
& =\left[\mathrm{M}^0 \mathrm{~L}^2 \mathrm{~T}^{-2}\right] \\
&
\end{aligned}
\)
The equation of a circle is given by \(x^2+y^2=a^2\), where \(a\) is the radius. If the equation is modified to change the origin other than \((0,0)\), then find out the correct dimensions of \(\mathrm{A}\) and \(\mathrm{B}\) in a new equation: \((x-A t)^2+\left(y-\frac{t}{B}\right)^2=a^2\).
The dimensions of \(\mathrm{t}\) is given as \(\left[\mathrm{T}^{-1}\right]\).
\(
\begin{aligned}
& (\mathrm{x}-\mathrm{At})^2+\left(\mathrm{y}-\frac{\mathrm{t}}{\mathrm{B}}\right)^2=\mathrm{a}^2 \\
& {[\mathrm{At}]=\mathrm{A} \times \frac{1}{\mathrm{~T}}=\mathrm{L}} \\
& \therefore \quad[\mathrm{A}]=\mathrm{T}^1 \mathrm{~L}^1 \\
& \frac{\mathrm{t}}{\mathrm{B}} \text { is in meters } \\
& \therefore \quad \frac{1}{\mathrm{~T}[\mathrm{~B}]}=\mathrm{L} \\
& \therefore \quad[\mathrm{B}]=\mathrm{T}^{-1} \mathrm{~L}^{-1}
\end{aligned}
\)
\(\left(P+\frac{a}{V^2}\right)(V-b)=R T\) represents the equation of state of some gases. Where \(P\) is the pressure, \(V\) is the volume, \(T\) is the temperature and \(a, b, R\) are the constants. The physical quantity, which has dimensional formula as that of \(\frac{b^2}{a}\), will be :
\(
\begin{aligned}
& {[b]=[V]} \\
& \quad\left[\frac{a}{b^2}\right]=[P] \quad \therefore\left[\frac{b^2}{a}\right]=\frac{1}{[P]}=\frac{1}{[B]}=[K]
\end{aligned}
\)
Electric field in a certain region is given by \(\dot{E}=\left(\frac{A}{x^2} \hat{i}+\frac{B}{y^3} \hat{j}\right)\). The SI unit of \(A\) and \(B\) are:
\(
\begin{aligned}
& \vec{E}=\frac{A}{x^2} \hat{i}+\frac{B}{y^3} \hat{j} \\
& {\left[\frac{A}{x^2}\right]=N C^{-1} \Rightarrow[A]=N^2 C^{-1}}
\end{aligned}
\)
Match List I with List II
\(
\begin{array}{|l|l|l|l|}
\hline & \text { List I } & & \text { List II } \\
\hline \text { A } & \text { Torque } & \text { I. } & {\mathrm{kg} \mathrm{~m}^{-1} \mathrm{~s}^{-2}} \\
\hline \text { B } & \text { Energy Density } & \text { II. } & {\mathrm{kg} \mathrm{~ms}^{-1}} \\
\hline \text { C } & \text { Pressure Gradient } & \text { III. } & {\mathrm{kg} \mathrm{~m}^{-2} \mathrm{~s}^{-2}} \\
\hline \text { D } & \text { Impulse } & \text { IV } & {\mathrm{kg} \mathrm{~m}^2 \mathrm{~s}^{-2}} \\
\hline
\end{array}
\)
Choose the correct answer from the options given below:
\(
\text { A-IV, B-I, C-III, D-II }
\)
If \(\mathrm{R}, \mathrm{X}_{\mathrm{L}}\) and \(\mathrm{X}_{\mathrm{C}}\) represent resistance, inductive reactance and capacitive reactance. Then which of the following is dimensionless:
All three have same dimension therefore \(\frac{\mathrm{R}}{\sqrt{\mathrm{X}_{\mathrm{L}} \mathrm{X}_{\mathrm{C}}}}\) is dimensionless.
Match List I with List II
\(
\begin{array}{|l|l|l|l|}
\hline & \text { List-I } & & \text { List-II } \\
\hline \text { A. } & \begin{array}{l}
\text { Angular } \\
\text { momentum }
\end{array} & \text { I } & {\left[\mathrm{ML}^2 \mathrm{~T}^{-2}\right]} \\
\hline \text { B } & \text { Torque } & \text { II } & {\left[\mathrm{ML}^{-2} \mathrm{~T}^{-2}\right]} \\
\hline \text { C } & \text { Stress } & \text { III } & {\left[\mathrm{ML}^2 \mathrm{~T}^{-1}\right]} \\
\hline \text { D } & \text { Pressure gradient } & \text { IV } & {\left[\mathrm{ML}^{-1} \mathrm{~T}^{-2}\right]} \\
\hline
\end{array}
\)
Choose the correct answer from the options given below:
A-III, B-I, C-IV, D-II
If the velocity of light \(\mathbf{c}\), universal gravitational constant \(\mathrm{G}\) and planck’s constant \(\mathrm{h}\) are chosen as fundamental quantities. The dimensions of mass in the new system is:
Say dimensional formale of mass is \(\mathrm{H}^{\mathrm{x}} \mathrm{C}^{\mathrm{y}} \mathrm{G}^{\mathrm{z}}\)
\(
\begin{aligned}
& M^1=\left(M L^2 T^{-1}\right)^x\left(L^{-1}\right)\left(M^{-1} L^3 T^{-2}\right)^z \\
& M^1 L^0 T^0=M^{x-z} L^{2 x+y+3 z} T^{-x-y-2 z}
\end{aligned}
\)
on comparing both side
\(
\begin{aligned}
& x-z=1 \\
& 2 x+y+3 z=0 \\
& -x-y-2 z=0
\end{aligned}
\)
On solving above equations we get
\(
x=\frac{1}{2} \quad y=\frac{1}{2} \quad z=\frac{-1}{2}
\)
The velocity time graph of a body moving in a straight line is shown in figure.
The ratio of displacement to distance travelled by the body in time 0 to \(10 \mathrm{~s}\) is
\(
\begin{aligned}
& \text { Displacement }=\Sigma \text { area }=16-8+16-8=16 \mathrm{~m} \\
& \text { Distance }=\Sigma \mid \text { area } \mid=48 \mathrm{~m} \\
& \frac{\text { displacement }}{\text { Distance }}=\frac{1}{3}
\end{aligned}
\)
A car travels a distance of ‘ \(x\) ‘ with speed \(V_1\) and then same distance ‘ \(x\) ‘ with speed \(V_2\) in the same direction. The average speed of the car is:
\(
\begin{aligned}
& \text { Average velocity }=\frac{\text { Total displacement }}{\text { Total time }} \\
& =\frac{\mathrm{x}+\mathrm{x}}{\frac{\mathrm{x}}{\mathrm{v}_1}+\frac{\mathrm{x}}{\mathrm{v}_2}}=\frac{2 \mathrm{v}_1 \mathrm{v}_2}{\mathrm{v}_1+\mathrm{v}_2}
\end{aligned}
\)
The distance travelled by a particle is related to time \(t\) as \(x=4 t^2\). The velocity of the particle at \(t=\) \(5 \mathrm{~s}\) is .
\(
\begin{aligned}
& x=4 t^2 \\
& v=\frac{d x}{d t}=8 t
\end{aligned}
\)
At \(\mathrm{t}=5 \mathrm{sec}\)
\(
\mathrm{v}=8 \times 5=40 \mathrm{~m} / \mathrm{s}
\)
A tennis ball is dropped on to the floor from a height of \(9.8 \mathrm{~m}\). It rebounds to a height \(5.0 \mathrm{~m}\). Ball comes in contact with the floor for \(0.2 \mathrm{~s}\). The average acceleration during contact is _______ \(\mathrm{ms}^{-2}\). [Given \(\mathrm{g}=10 \mathrm{~ms}^{-2}\) ]
\(
\begin{aligned}
& \mathrm{v}_{\mathrm{i}}=\sqrt{2 \mathrm{gh}_{\mathrm{i}}} \\
& =\sqrt{2 \times 10 \times 9.8} \downarrow \\
& =14 \mathrm{~m} / \mathrm{s} \downarrow
\end{aligned}
\)
\(
\begin{aligned}
& \mathrm{v}_{\mathrm{f}}=\sqrt{2 \mathrm{gh}_{\mathrm{f}}} \\
& =\sqrt{2 \times 10 \times 5} \uparrow \\
& =\mathbf{1 0} \mathbf{~ m} / \mathbf{s} \uparrow
\end{aligned}
\)
\(
\left|\overrightarrow{\mathrm{a}}_{\mathrm{avg}}\right|=\left|\frac{\Delta \overrightarrow{\mathrm{v}}}{\Delta \mathrm{t}}\right|=\frac{24}{0.2}=120 \mathrm{~m} / \mathrm{s}^2
\)
Match Column-I with Column-II :
Choose the correct answer from the options given below:
\(
\begin{aligned}
& \frac{\mathrm{dx}}{\mathrm{dt}}=\text { slope } \geq 0 \text { always increasing } \\
& (\mathrm{A}-\mathrm{II}) \\
& \frac{\mathrm{dx}}{\mathrm{dt}}<0 ; \text { and at } \mathrm{t} \rightarrow \infty \frac{\mathrm{dx}}{\mathrm{dt}} \rightarrow 0 \\
& (\mathrm{~B}-\mathrm{IV}) \\
& \frac{\mathrm{dx}}{\mathrm{dt}}>0 \text { for first half } \frac{\mathrm{dx}}{\mathrm{dt}}<0 \text { for second half } \\
& (\mathrm{C}-\mathrm{III}) \\
& \frac{\mathrm{dx}}{\mathrm{dt}}=\text { constant }
\end{aligned}
\)
A horse rider covers half the distance with \(5 \mathrm{~m} / \mathrm{s}\) speed. The remaining part of the distance was travelled with speed \(10 \mathrm{~m} / \mathrm{s}\) for half the time and with speed \(15 \mathrm{~m} / \mathrm{s}\) for other half of the time. The mean speed of the rider averaged over the whole time of motion is \(x / 7 \mathrm{~m} / \mathrm{s}\). The value of \(x\) is
\(
t_{A B}=\frac{x}{5 m / s}
\)
In motion \(B C\)
\(
x=d_1+d_2
\)
where \(d_1 \& d_2\) we the distance travelled with \(10 \mathrm{~m} / \mathrm{s}\) and \(15 \mathrm{~m} / \mathrm{s}\) respectively in equal time intervals \(\frac{t}{2}\) each
\(
\begin{aligned}
& d_1=\frac{10 t}{2}, d_2=\frac{15 t}{2} \\
& d_1+d_2=x=\frac{t}{2}(10+15)=\frac{25 t}{2}
\end{aligned}
\)
\(
\langle v\rangle=\frac{2 x}{\frac{x}{5}+\frac{2 x}{25}}=\frac{2 \times 25}{5+2}=\frac{50}{7} \mathrm{~m} / \mathrm{s}
\)
An object is allowed to fall from a height \(\mathrm{R}\) above the earth, where \(\mathrm{R}\) is the radius of earth. Its velocity when it strikes the earth’s surface, ignoring air resistance, will be :
\(
\begin{aligned}
& \text { Loss in } \mathrm{PE}=\text { Gain in KE } \\
& \left(-\frac{\mathrm{GMm}}{2 \mathrm{R}}\right)-\left(-\frac{\mathrm{GMm}}{\mathrm{R}}\right)=\frac{1}{2} \mathrm{mv}^2 \\
& \Rightarrow \mathrm{v}^2=\frac{\mathrm{GM}}{\mathrm{R}}=\mathrm{gR} \\
& \Rightarrow \mathrm{v}=\sqrt{\mathrm{gR}}
\end{aligned}
\)
A vehicle travels \(4 \mathrm{~km}\) with speed of \(3 \mathrm{~km} / \mathrm{h}\) and another \(4 \mathrm{~km}\) with speed of \(5 \mathrm{~km} / \mathrm{h}\), then its average speed is :
\(
\begin{aligned}
& \frac{2}{\mathrm{~V}_{\mathrm{av}}}=\frac{1}{3}+\frac{1}{5}=\frac{8}{15} \\
& \Rightarrow \mathrm{V}_{\mathrm{av}}=\frac{15}{4}=3.75 \mathrm{~km} / \mathrm{h}
\end{aligned}
\)
A body is moving with constant speed, in a circle of radius \(10 \mathrm{~m}\). The body completes one revolution in \(4 \mathrm{~s}\). At the end of 3rd second, the displacement of body (in \(\mathrm{m}\) ) from its starting point is:
\(
\begin{aligned}
& \omega=\frac{2 \pi}{\mathrm{T}}=\frac{2 \pi}{4}=\frac{\pi}{2} \mathrm{rad} / \mathrm{s} \\
& \theta=\omega \mathrm{t} \\
& \theta=\frac{\pi}{2} \times 3 \\
& \theta=\frac{3 \pi}{2} \mathrm{rad}
\end{aligned}
\)
\(
\begin{aligned}
&r=10 \mathrm{~m}\\
&T=4 \mathrm{sec}\\
&d=\sqrt{2}(10) \mathrm{m}
\end{aligned}
\)
An object moves with speed \(v_1, v_2\), and \(v_3\) along a line segment \(A B, B C\) and \(C D\) respectively as shown in figure. Where \(\mathrm{AB}=\mathrm{BC}\) and \(\mathrm{AD}=3 \mathrm{AB}\), then average speed of the object will be :
\(
\begin{aligned}
& \mathrm{AB}=x \\
& \mathrm{BC}=x \\
& 2 x+\mathrm{CD}=3 x \\
& \mathrm{CD}=x \\
& \langle\mathrm{v}\rangle=\frac{3 x}{\frac{x}{v_1}+\frac{x}{v_2}+\frac{x}{v_3}}=\frac{3 v_1 v_2 v_3}{v_2 v_3+v_1 v_3+v_1 v_2}
\end{aligned}
\)
For a train engine moving with speed of \(20 \mathrm{~ms}^{-1}\). the driver must apply brakes at a distance of \(500 \mathrm{~m}\) before the station for the train to come to rest at the station. If the brakes were applied at half of this distance, the train engine would cross the station with speed \(\sqrt{\mathrm{x}} \mathrm{ms}^{-1}\). The value of \(\mathrm{x}\) is _____. (Assuming same retardation is produced by brakes)
\(
\mathrm{u}=20 \mathrm{~m} / \mathrm{s}, \mathrm{S}_1=500 \mathrm{~m}, \mathrm{v}=0
\)
By third equation of mation
\(
\begin{aligned}
& 0=(20)^2-2 \mathrm{a} \cdot 500 \Rightarrow \mathrm{a}=\frac{4}{10} \mathrm{~m} / \mathrm{s}^2 \\
& \mathrm{u}=20 \mathrm{~m} / \mathrm{s}, \mathrm{S}_2=250 \mathrm{~m}, \mathrm{v}=? \\
& \mathrm{v}^2=(20)^2-2 \mathrm{a} \cdot 250 \\
& =\mathrm{v}=\sqrt{200} \mathrm{~m} / \mathrm{s} \\
& \mathrm{x}=200
\end{aligned}
\)
The maximum vertical height to which a man can throw a ball is \(136 \mathrm{~m}\). The maximum horizontal distance upto which he can throw the same ball is
\(
\mathrm{H}_{\max }=\frac{\mathrm{v}^2}{2 \mathrm{~g}}=136 \mathrm{~m}
\)
\(
\begin{aligned}
& \mathrm{R}_{\max }=\frac{\mathrm{v}^2}{\mathrm{~g}}=2 \mathrm{H}_{\max } \\
& =2(136) \\
& =272 \mathrm{~m}
\end{aligned}
\)
Two objects are projected with same velocity ‘ \(u\) ‘ however at different angles \(\alpha\) and \(\beta\) with the horizontal. If \(\alpha+\beta=90^{\circ}\), the ratio of horizontal range of the first object to the \(2^{\text {nd }}\) object will be :
\(
\text { Range }=\frac{\mathrm{u}^2 \sin 2 \theta}{\mathrm{g}}
\)
Range for projection angle ” \(\alpha\) “
\(
\mathrm{R}_1=\frac{\mathrm{u}^2 \sin 2 \alpha}{\mathrm{g}}
\)
Range for projection angle ” \(\beta\) “
\(
\mathrm{R}_2=\frac{\mathrm{u}^2 \sin 2 \beta}{\mathrm{g}}
\)
\(
\begin{aligned}
& \alpha+\beta=90^{\circ}(\text { Given }) \\
& \Rightarrow \beta=90^{\circ}-\alpha \\
& \mathrm{R}_2=\frac{\mathrm{u}^2 \sin 2\left(90^{\circ}-\alpha\right)}{\mathrm{g}} \\
& \mathrm{R}_2=\frac{\mathrm{u}^2 \sin \left(180^{\circ}-2 \alpha\right)}{\mathrm{g}} \\
& \mathrm{R}_2=\frac{\mathrm{u}^2 \sin 2 \alpha}{\mathrm{g}} \\
& \Rightarrow \frac{\mathrm{R}_1}{\mathrm{R}_2}=\frac{\left(\frac{\mathrm{u}^2 \sin 2 \alpha}{\mathrm{g}}\right)}{\left(\frac{\mathrm{u}^2 \sin 2 \alpha}{\mathrm{g}}\right)}=\frac{1}{1}
\end{aligned}
\)
A stone is projected at angle \(30^{\circ}\) to the horizontal. The ratio of kinetic energy of the stone at point of projection to its kinetic energy at the highest point of flight will be :
\(
\frac{\mathrm{KE}_{\text {pop }}}{\mathrm{KE}_{\text {top }}}=\frac{\frac{1}{2} \mathrm{M}(\mathrm{u})^2}{\frac{1}{2} \mathrm{M}\left(\mathrm{u} \cos 30^{\circ}\right)^2}=\frac{4}{3}
\)
A particle of mass \(100 \mathrm{~g}\) is projected at time \(\mathrm{t}=0\) with a speed \(20 \mathrm{~ms}^{-1}\) at an angle \(45^{\circ}\) to the horizontal as given in the figure. The magnitude of the angular momentum of the particle about the starting point at time \(t=2 \mathrm{~s}\) is found to be \(\sqrt{\mathrm{K}} \mathrm{kg} \mathrm{m}^2 / \mathrm{s}\). The value of \(\mathrm{K}\) is ____. \(\left(\text { Take } g=10 \mathrm{~ms}^{-2}\right)\)
\(
\text { Use } \Delta \mathrm{L}=\int_0^{\mathrm{t}} \tau \mathrm{dt}
\)
\(
L_0=\int_0^2 m g\left(v_x t\right) d t
\)
\(
=\operatorname{mg} {{v_x}} \frac{\mathrm{t}^2}{2}=(0.1)(10)(10 \sqrt{2}) \frac{2^2}{2}
\)
\(
\begin{aligned}
& =20 \sqrt{2} \\
& =\sqrt{800} \mathrm{~kg} \mathrm{~m}^2 / \mathrm{s}
\end{aligned}
\)
The initial speed of a projectile fired from ground is \(u\). At the highest point during its motion, the speed of projectile is \(\frac{\sqrt{3}}{2} \mathrm{u}\). The time of flight of the projectile is:
\(
\begin{aligned}
& \mathrm{u} \cos \theta=\frac{\sqrt{3} \mathrm{u}}{2} \Rightarrow \cos \theta=\frac{\sqrt{3}}{2} \\
& \Rightarrow \theta=30^{\circ} \\
& \mathrm{T}=\frac{2 \mathrm{u} \sin 30^{\circ}}{\mathrm{g}}=\frac{\mathrm{u}}{\mathrm{g}}
\end{aligned}
\)
The speed of a swimmer is \(4 \mathrm{~km} \mathrm{~h}^{-1}\) in still water. If the swimmer makes his strokes normal to the flow of river of width \(1 \mathrm{~km}\), he reaches a point \(750 \mathrm{~m}\) down the stream on the opposite bank. The speed of the river water is ___ \(\mathrm{km} \mathrm{h}^{-1}\).
Time to cross the River width \(\omega=1000 \mathrm{~m} \text { is }=\frac{1 \mathrm{~km}}{4 \mathrm{~km} / \mathrm{h}}\)
Drift \(\mathrm{x}=\mathrm{Vm} / \mathrm{g} \times \mathrm{t}\)
Where \(\mathrm{Vm} / \mathrm{g}\) is velocity of River w.r. to ground.
\(
\begin{aligned}
& \mathrm{x}=\mathrm{Vm} / \mathrm{g} \times \frac{1}{4}=750 \mathrm{~m}=\frac{3}{4} \mathrm{~km} \\
& \mathrm{Vm} / \mathrm{g}=3 \mathrm{~km} / \mathrm{hr}
\end{aligned}
\)
Two bodies are projected from ground with same speeds \(40 \mathrm{~ms}^{-1}\) at two different angles with respect to horizontal. The bodies were found to have same range. If one of the body was projected at an angle of \(60^{\circ}\), with horizontal then sum of the maximum heights, attained by the two projectiles, is ____ m. (Given \(\mathrm{g}=10 \mathrm{~ms}^{-2}\) )
\(
\begin{aligned}
& \theta_1+\theta_2=90^{\circ} \\
& \Rightarrow \theta_2=30^{\circ} \\
& \Rightarrow\left(H_{\max }\right)_1+\left(H_{\max }\right)_2 \\
& =\frac{U^2 \sin ^2 \theta_1}{2 g}+\frac{U^2 \sin ^2 \theta_2}{2 g} \\
& =\frac{40^2}{20}\left(\frac{1}{4}+\frac{3}{4}\right)=80 \mathrm{~m}
\end{aligned}
\)
A child stands on the edge of the cliff \(10 \mathrm{~m}\) above the ground and throws a stone horizontally with an initial speed of \(5 \mathrm{~ms}^{-1}\). Neglecting the air resistance, the speed with which the stone hits the ground will be _____ \(\mathrm{ms}^{-1}\) (given, \(\mathrm{g}=10 \mathrm{~ms}^{-2}\) ).
\(
\begin{aligned}
& \mathrm{v}_{\mathrm{y}}=\sqrt{2 g h}=\sqrt{200} \\
& v_{n e t}=\sqrt{25+200}=15 \mathrm{~m} / \mathrm{s}
\end{aligned}
\)
As per given figure, a weightless pulley \(P\) is attached on a double inclined frictionless surface. The tension in the string (massless) will be (if \(g=\) \(10 \mathrm{~m} / \mathrm{s}^2\) )
\(
4 g \sin 60^{\circ}-T=4 a \dots(1)
\)
\(
\mathrm{T}-\mathrm{g} \sin 30^{\circ}=\mathrm{a} \dots(2)
\)
\(
\begin{aligned}
& 4 \mathrm{~g} \frac{\sqrt{3}}{2}-\mathrm{T}=4 \mathrm{a} \\
& \mathrm{T}-\frac{\mathrm{g}}{2}=1 \mathrm{a} \\
& 2 \sqrt{3} \mathrm{~g}-\mathrm{T}=4\left(\mathrm{~T}-\frac{\mathrm{g}}{2}\right) \Rightarrow 5 \mathrm{~T}=(2 \sqrt{3}+2) \mathrm{g} \\
& \mathrm{T}=\frac{10}{5}(2 \sqrt{3}+2) \Rightarrow \mathrm{T}=4(\sqrt{3}+1) \mathrm{N}
\end{aligned}
\)
Given below are two statements :
Statement-I : An elevator can go up or down with uniform speed when its weight is balanced with the tension of its cable.
Statement-II : Force exerted by the floor of an elevator on the foot of a person standing on it is more than his/her weight when the elevator goes down with increasing speed.
In the light of the above statements, choose the correct answer from the options given below :
Statement-1: When elevator is moving with uniform speed \(\mathrm{T}=\mathrm{F}_{\mathrm{g}}\)
Statement-2
When elevator is going down with increasing speed, its acceleration is downward.
Hence
\(
\mathrm{W}-\mathrm{N}=\frac{\mathrm{W}}{\mathrm{g}} \times \mathrm{a}
\)
\(\mathrm{N}=\mathrm{W}\left(1-\frac{\mathrm{a}}{\mathrm{g}}\right)\) i.e. less than weight.
Consider a block kept on an inclined plane (inclined at \(45^{\circ}\) ) as shown in the figure. If the force required to just push it up the incline is 2 times the force required to just prevent it from sliding down, the coefficient of friction between the block and inclined plane \((\mu)\) is equal to :
From Fig.A:
\(
\begin{aligned}
& \mathrm{F}_1=\mathrm{mg} \sin 45^{\circ}+\mathrm{f}=\mathrm{mg} \sin 45^{\circ}+\mu \mathrm{N} \\
& \mathrm{F}_1=\frac{\mathrm{mg}}{\sqrt{2}}+\mu \mathrm{mg} \cos 45^{\circ} \\
& \mathrm{F}_1=\frac{\mathrm{mg}}{\sqrt{2}}(1+\mu)
\end{aligned}
\)
From Fig.B:
\(
\begin{aligned}
& \mathrm{F}_2=\mathrm{mg} \sin 45^{\circ}-\mathrm{f}=\mathrm{mg} \sin 45^{\circ}-\mu \mathrm{N} \\
& =\frac{\mathrm{mg}}{\sqrt{2}}(1-\mu) \\
& \mathrm{F}_1=2 \mathrm{~F}_2 \\
& \frac{\mathrm{mg}}{\sqrt{2}}(1+\mu)=2 \frac{\mathrm{mg}}{\sqrt{2}}(1-\mu) \\
& 1+\mu=2-2 \mu \\
& \mu=1 / 3=0.33
\end{aligned}
\)
A block of mass \(m\) slides down the plane inclined at angle \(30^{\circ}\) with an acceleration \(\frac{g}{4}\). The value of coefficient of kinetic friction will be :
\(
\begin{aligned}
& \mathrm{Mg} \sin 30^{\circ}-\mu \mathrm{mg} \cos 30^{\circ}=\mathrm{ma} \\
& \frac{\mathrm{g}}{2}-\frac{\sqrt{3}}{2} \cdot \mu \mathrm{g}=\frac{\mathrm{g}}{4}
\end{aligned}
\)
\(
\begin{aligned}
& \frac{\sqrt{3}}{2} \mu=\frac{1}{4} \\
& \mu=\frac{1}{2 \sqrt{3}}
\end{aligned}
\)
Force acts for \(20 \mathrm{~s}\) on a body of mass \(20 \mathrm{~kg}\), starting from rest, after which the force ceases and then body describes \(50 \mathrm{~m}\) in the next \(10 \mathrm{~s}\). The value of force will be :
\(
\begin{aligned}
& 50=\mathrm{V} \times 10 \\
& \mathrm{~V}=5 \mathrm{~m} / \mathrm{s} \\
& \mathrm{V}=0+\mathrm{a} \times 20 \\
& 5=\mathrm{a} \times 20 \\
& \mathrm{a}=\frac{1}{4} \mathrm{~m} / \mathrm{s}^2 \\
& \mathrm{~F}=\mathrm{ma}=20 \times \frac{1}{4}=5 \mathrm{~N}
\end{aligned}
\)
The time taken by an object to slide down \(45^{\circ}\) rough inclined plane is \(\mathrm{n}\) times as it takes to slide down a perfectly smooth \(45^{\circ}\) incline plane. The coefficient of kinetic friction between the object and the incline plane is
\(
\begin{aligned}
& \mathrm{a}_1=\mathrm{g} \sin \theta=\mathrm{g} / \sqrt{2} \\
& \mathrm{a}_2=\mathrm{g} \sin \theta-\mathrm{{\mu_k}g} \cos \theta=\frac{\mathrm{g}}{\sqrt{2}}-\frac{\mathrm{{\mu_k}g}}{\sqrt{2}} \\
& \mathrm{t}_2=\mathrm{nt}_1 \quad \& \quad \mathrm{a}_1 \mathrm{t}_1^2=\mathrm{a}_2 \mathrm{t}_2^2 \\
& \frac{\mathrm{g}}{\sqrt{2}} \mathrm{t}_1^2=\left(\frac{\mathrm{g}}{\sqrt{2}}-\frac{\mathrm{{\mu_k}g}}{\sqrt{2}}\right) \mathrm{n}^2 \mathrm{t}_1^2 \\
& \mathrm{~\mu_k}=1-\frac{1}{\mathrm{n}^2}Â
\end{aligned}
\)
Note:
since both starts From \(\mathrm{O}\) i.e. from rest and the distance (S) is same then
\(
\begin{aligned}
& \mathrm{S}_1=\mathrm{S}_2 \\
& \frac{1}{2} \mathrm{{a_1}{t_1}}^2=\frac{1}{2} \mathrm{a_2}(\mathrm{nt_2})^2
\end{aligned}
\)
The figure represents the momentum time \((p-t)\) curve for a particle moving along an axis under the influence of the force. Identify the regions on the graph where the magnitude of the force is maximum and minimum respectively?
\(
\text { If }\left(t_3-t_2\right)<t_1 \text {. }
\)
\(\left|\frac{\mathrm{d} \overrightarrow{\mathrm{p}}}{\mathrm{dt}}\right|=|\overrightarrow{\mathrm{F}}| \Rightarrow \frac{\mathrm{d} \overrightarrow{\mathrm{p}}}{\mathrm{dt}}=\) Slope of curve
max slope (c)
min slope (b)
A block of \(\sqrt{3} \mathrm{~kg}\) is attached to a string whose other end is attached to the wall. An unknown force \(\mathrm{F}\) is applied so that the string makes an angle of \(30^{\circ}\) with the wall. The tension \(\mathrm{T}\) is :
(Given \(\mathrm{g}=10 \mathrm{~ms}^{-2}\) )
\(
\begin{aligned}
& \theta=30^{\circ} \\
& \cos \theta=\frac{\sqrt{3} \mathrm{~g}}{\mathrm{~T}} \\
& \Rightarrow \frac{\sqrt{3}}{2}=\frac{\sqrt{3} \mathrm{~g}}{\mathrm{~T}} \\
& \Rightarrow \mathrm{T}=20 \mathrm{~N}
\end{aligned}
\)
A stone tied to \(180 \mathrm{~cm}\) long string at its end is making 28 revolutions in horizontal circle in every minute. The magnitude of acceleration of stone is \(\frac{1936}{\mathrm{x}} \mathrm{ms}^{-2}\). The value of \(\mathrm{x}\) ____.
\(
\left(\text { Take } \pi=\frac{22}{7}\right)
\)
Acceleration of stone \(a=\frac{v^2}{r}=\omega^2 R\)
\(
\begin{aligned}
a & =\left(\frac{28 \times 2}{60} \times \frac{22}{7}\right)^2 \times 1.8 \\
& =\frac{1936}{125}
\end{aligned}
\)
So, \(x=125\)
As shown in figure, a \(70 \mathrm{~kg}\) garden roller is pushed with a force of \(\overrightarrow{\mathrm{F}}=200 \mathrm{~N}\) at an angle of \(30^{\circ}\) with horizontal. The normal reaction on the roller is (Given \(\mathrm{g}=10 \mathrm{~m} \mathrm{~s}^{-2}\) )
\(
\begin{aligned}
\mathrm{N} & =\mathrm{mg}+\mathrm{F} \sin 30^{\circ} \\
& =700+200 \times \frac{1}{2}=800 \text { newton } .
\end{aligned}
\)
A lift of mass \(M=500 \mathrm{~kg}\) is descending with speed of \(2 \mathrm{~ms}^{-1}\). Its supporting cable begins to slip thus allowing it to fall with a constant acceleration of \(2 \mathrm{~ms}^{-2}\). The kinetic energy of the lift at the end of fall through to a distance of \(6 \mathrm{~m}\) will be ______ \(\mathrm{kJ}\).
\(
\begin{aligned}
&\begin{aligned}
v^2 & =u^2+2 a s \\
& =2^2+2(2)(6) \\
& =4+24=28
\end{aligned}\\
&\begin{aligned}
\mathrm{KE} & =\frac{1}{2} \mathrm{mv}^2 \\
& =\frac{1}{2}(500) 28 \\
& =7000 \mathrm{~J} \\
& =7 \mathrm{~kJ}
\end{aligned}
\end{aligned}
\)
A stone of mass \(1 \mathrm{~kg}\) is tied to end of a massless string of length \(1 \mathrm{~m}\). If the breaking tension of the string is \(400 \mathrm{~N}\), then maximum linear velocity, the stone can have without breaking the string, while rotating in horizontal plane, is:
\(
\begin{aligned}
& T \sin \theta=\frac{m v^2}{l \sin \theta} \\
& \cos \theta=\frac{m g}{T} \ldots \ldots(1) \\
& \sin ^2 \theta=\frac{m v^2}{T l} \ldots(2)
\end{aligned}
\)
From (1) and (2),
\(
\begin{aligned}
& 1=\left(\frac{m g}{T}\right)^2+\frac{m v^2}{T l} \\
& \Rightarrow 1=\left(\frac{10}{400}\right)^2+\frac{v^2}{400} \\
& \Rightarrow v^2=399.78 \\
& \Rightarrow v=20 \mathrm{~m} / \mathrm{s}
\end{aligned}
\)
A body of mass \(10 \mathrm{~kg}\) is moving with an initial speed of \(20 \mathrm{~m} / \mathrm{s}\). The body stops after \(5 \mathrm{~s}\) due to friction between body and the floor. The value of the coefficient of friction is: (Take acceleration due to gravity \(\mathrm{g}=10 \mathrm{~ms}^{-2}\) )
\(
\begin{aligned}
& a=-\mu g \\
& \because v=u+a t \\
& 0=20+(-\mu \times 10) \times 5 \\
& 50 \mu=20 \\
& \mu=\frac{2}{5}=0.4
\end{aligned}
\)
A block of mass \(5 \mathrm{~kg}\) is placed at rest on a table of rough surface. Now, if a force of \(30 \mathrm{~N}\) is applied in the direction parallel to surface of the table, the block slides through a distance of \(50 \mathrm{~m}\) in an interval of time \(10 \mathrm{~s}\). Coefficient of kinetic friction is (given, \(\mathrm{g}=10 \mathrm{~ms}^{-2}\) ):
\(
\begin{aligned}
& S=u t+\frac{1}{2} a t^2 \\
& 50=0+\frac{1}{2} \times a \times 100 \\
& a=1 \mathrm{~m} / \mathrm{s}^2 \\
& F-\mu m g=m a \\
& 30-\mu \times 50=5 \times 1 \\
& 50 \mu=25 \\
& \mu=\frac{1}{2}
\end{aligned}
\)
As shown in the figure a block of mass \(10 \mathrm{~kg}\) lying on a horizontal surface is pulled by a force \(\mathrm{F}\) acting at an angle \(30^{\circ}\), with horizontal. For \(\mu_{\mathrm{s}}=0.25\), the block will just start to move for the value of \(\mathrm{F}\) : [Given \(\mathrm{g}=10 \mathrm{~ms}^{-2}\) ]
\(
\begin{aligned}
& F \cos 30^{\circ}=\mu_s N \ldots \ldots(1) \\
& F \sin 30^{\circ}+\mathrm{N}=\mathrm{mg} \\
& \Rightarrow \mathrm{N}=\mathrm{mg}-\mathrm{F} \sin 30^{\circ} \ldots(2)
\end{aligned}
\)
From equation 1,
\(
\begin{aligned}
& \mathrm{F} \cos 30^{\circ}=\mu_{\mathrm{s}}\left(\mathrm{mg}-\mathrm{F} \sin 30^{\circ}\right) \\
& \mathrm{F} \cos 30^{\circ}=\mu_{\mathrm{s}} \mathrm{mg}-\mu_{\mathrm{s}} \mathrm{F} \sin 30^{\circ} \\
& \mathrm{F}\left(\cos 30^{\circ}+\mu_{\mathrm{s}} \sin 30^{\circ}\right)=\mu_{\mathrm{s}} \mathrm{mg} \\
& \mathrm{F}=\frac{\mu_{\mathrm{s}} \mathrm{mg}}{\cos 30^{\circ}+\mu_{\mathrm{s}} \sin 30^{\circ}}=\frac{0.25 \times 10 \times 10}{\sqrt{3} / 2 \times 0.25 \times 1 / 2} \\
& \Rightarrow \mathrm{F}=\frac{25}{\sqrt{3} / 2+\frac{0.25}{2}}=\frac{50}{1.73+0.25}=\frac{50}{1.98}=25.2 \mathrm{~N}
\end{aligned}
\)
Identify the pair of physical quantities which have different dimensions :
\(
\begin{aligned}
&\mathrm{S}=\frac{\mathrm{Q}}{\mathrm{m} \Delta \mathrm{T}}=\frac{\mathrm{J}}{\mathrm{Kg}^{\circ} \mathrm{C}}\\
&\mathrm{L}=\frac{\mathrm{Q}}{\mathrm{m}}=\frac{\mathrm{J}}{\mathrm{Kg}}
\end{aligned}
\)
Therefore, they have different dimensions.
Identify the pair of physical quantities that have same dimensions :
Velocity gradient \(=\frac{d v}{d x}=\frac{1}{S}\)
\(\Rightarrow\) Dimensions are \(\frac{\left[L T^{-1}\right]}{[L]}=\left[T^{-1}\right]\)
Decay constant \(\lambda\) has dimensions of \(\left[T^{-1}\right]\) because of the relation \(
\lambda=\frac{1}{\mathrm{~S}}
\)
\(\Rightarrow\) Velocity gradient and decay constant have same dimensions.
An expression for a dimensionless quantity \(\mathrm{P}\) is given by \(\mathrm{P}=\frac{\alpha}{\beta} \log _{\mathrm{e}}\left(\frac{\mathrm{kt}}{\beta \mathrm{x}}\right)\); where \(\alpha\) and \(\beta\) are constants, \(\mathrm{x}\) is distance ; \(\mathrm{k}\) is Boltzmann constant and \(t\) is the temperature. Then the dimensions of \(\alpha\) will be :
\(
\begin{aligned}
& \mathrm{P}=\frac{\alpha}{\beta} \log _{\mathrm{e}}\left(\frac{\mathrm{kt}}{\beta \mathrm{x}}\right) \\
& \frac{\mathrm{kt}}{\beta \mathrm{x}}=1 \Rightarrow \beta=\frac{\mathrm{kt}}{\mathrm{x}}=\frac{\mathrm{ML}^2 \mathrm{~T}^{-2}}{\mathrm{~L}} \\
& \left(\because \mathrm{E}=\frac{1}{2} \mathrm{kt}\right)
\end{aligned}
\)
As \(\mathrm{P}\) is dimensionless
\(
\Rightarrow[\alpha]=[\beta]=\left[\mathrm{MLT}^{-2}\right]
\)
The dimension of mutual inductance is :
\(\mathrm{e}_2\) : induced emf in secondary coil
\({i}_1\) : Current in primary coil
\(M\) : Mutual inductance
\(
\begin{aligned}
& e_2=-M \frac{d i_1}{d t} \\
& \mathrm{M}=-\frac{\mathrm{e}_2}{\frac{\mathrm{di_1}}{\mathrm{dt}}} \\
&
\end{aligned}
\)
\(
\begin{aligned}
& {[\mathrm{M}]=\frac{\left[\mathrm{e}_2\right]}{\left[\frac{\mathrm{di}_1}{\mathrm{dt}}\right]}=\frac{\left[\frac{\mathrm{W}}{\mathrm{q}}\right]}{\left[\frac{\mathrm{di}_1}{\mathrm{dt}}\right]}=\frac{\left[\mathrm{ML}^2 \mathrm{~T}^{-2}\right]}{[\mathrm{AT}]}} \\
& =\left[\mathrm{ML}^2 \mathrm{~T}^{-2} \mathrm{~A}^{-2}\right]
\end{aligned}
\)
You cannot copy content of this page