Multiple Choice Questions with one Correct Answer
0 of 50 Questions completed
Questions:
You have already completed the quiz before. Hence you can not start it again.
Quiz is loading…
You must sign in or sign up to start the quiz.
You must first complete the following:
0 of 50 Questions answered correctly
Your time:
Time has elapsed
You have reached 0 of 0 point(s), (0)
Earned Point(s): 0 of 0, (0)
0 Essay(s) Pending (Possible Point(s): 0)
In which of the following pairs, there is greatest difference in the oxidation number of the underlined elements?
(d) O.N. of \(\mathrm{N}\) in \(\mathrm{NO}_2\) and \(\mathrm{N}_2 \mathrm{O}_4\) is +4 difference is zero.
O.N. of \(\mathrm{P}\) in \(\mathrm{P}_2 \mathrm{O}_5\) and \(\mathrm{P}_4 \mathrm{O}_{10}\) is +5 difference is zero
\(
\mathrm{O} . \mathrm{N} \text {. of } \mathrm{N} \text { in } \mathrm{N}_2 \mathrm{O} \text { is }+1 \text { and in } \mathrm{NO} \text { is }+2 \text {. Thedifference is } 1
\)
\(
\text { O.N. of S in } \mathrm{SO}_2 \text { is }+4 \text { and in } \mathrm{SO}_3 \text { is }+6 \text {. The difference is }+2 \text {. }
\)
Which of the following is a redox reaction?
The oxidation state shows a change only in (d)
Several blocks of magnesium are fixed to the bottom of a ship to
(b) Magnesium provides cathodic protection and prevent rusting or corrosion.
When \(\mathrm{KMnO}_4\) reacts with acidified \(\mathrm{FeSO}_4\)
\(
{2 \mathrm{~K}} \stackrel{+7}{\mathrm{M}} \mathrm{O}_4+3 \mathrm{H}_2 \mathrm{SO}_4 \rightarrow \mathrm{K}_2 \mathrm{SO}_4+2 \stackrel{+2}{\mathrm{Mn} \mathrm{SO}_4}+3 \mathrm{H}_2 \mathrm{O}+5 \mathrm{O}
\)
\(
\stackrel{+2}{2 \mathrm{FeSO}_4}+\mathrm{H}_2 \mathrm{SO}_4+\mathrm{O} \rightarrow \stackrel{+3}{\mathrm{Fe}_2}\left(\mathrm{SO}_4\right)_3+\mathrm{H}_2 \mathrm{O}
\)
O.N. of Mn changes from +7 to +2 (Reduction)
O.N. of Fe changes from +2 to +3 (Oxidation)
Which of the following chemical reactions depict the oxidizing beahviour of \(\mathrm{H}_2 \mathrm{SO}_4\)?
\(
2 \mathrm{HI}^{-1}+\stackrel{+6}{\mathrm{H}_2} \mathrm{SO}_4 \longrightarrow \mathrm{I}_2^0+\stackrel{+4}{\mathrm{SO}_2}+2 \mathrm{H}_2 \mathrm{O}
\)
In This reaction oxidation number of \(\mathrm{S}\) is decreasing from +6 to +4 hence undergoing reduction and for \(\mathrm{HI}\) oxidation Number of \(I\) is increasing from -1 to 0 hence undergoing oxidation therefore \(\mathrm{H}_2 \mathrm{SO}_4\) is acting as oxidising agent.
Which of the following statements are correct concerning redox properties?
(i) A metal \(\mathrm{M}\) for which \(E^{\ominus}\) for the half life reaction \(\mathrm{M}^{\mathrm{n}+}+\mathrm{ne}^{-} \rightleftharpoons \mathrm{M}\) is very negative will be a good reducing agent.
(ii) The oxidizing power of the halogens decreases from chlorine to iodine.
(iii) The reducing power of hydrogen halides increases from hydrogen chloride to hydrogen iodide
(i) \(\mathrm{Mn}^{\mathrm{n}+}+\mathrm{ne}^{-} \rightleftharpoons \mathrm{M}\), for this reaction, high negative value of \(E^{\ominus}\) indicates lower reduction potential, that means \(\mathrm{M}\) will be a good reducing agent.
\(
\left[\begin{array}{c}
\text { Stronger reducing agent } \Rightarrow \text { Easy to oxidise } \\
\Downarrow \\
\text { Lower reduction potential } \Leftarrow \text { higher oxidation potential }
\end{array}\right]
\)
\(
\begin{array}{lllll}
\text { Element } & & & & & & & \mathrm{F} & & \mathrm{C} 1 & & \mathrm{Br} & &\mathrm{I}
\end{array}
\)
\(
\text { Reduction potential } E^{\ominus} Â +2.87+1.36+1.06+0.54
\)
As reduction potential decreases from fluorine to iodine, oxidising nature also decreases from fluorine to iodine.
(iii) The size of halide ions increases from \(\mathrm{F}^{-}\)to \(\mathrm{I}^{-}\). The bigger ion can loose electron easily. Hence the reducing nature increases from \(\mathrm{HF}\) to \(\mathrm{HI}\).
In the following balanced reaction,
\(
X \mathrm{MnO}_4^{-}+Y{\mathrm{C}_2} \mathrm{O}_4^{2-}+Z \mathrm{H}^{+} \rightleftharpoons X \mathrm{Mn}^{2+}+2 \mathrm{YCO}_2+\frac{Z}{2} \mathrm{H}_2 \mathrm{O}
\)
values of \(X, Y\) and \(Z\) respectively are
\(
X \mathrm{MnO}_4^{-}+Y{\mathrm{C}_2} \mathrm{O}_4^{2-}+Z \mathrm{H}^{+} \rightleftharpoons X \mathrm{Mn}^{2+}+2 \mathrm{YCO}_2+\frac{Z}{2} \mathrm{H}_2 \mathrm{O}
\)
First half reaction
\(
\mathrm{MnO}_4^{-} \longrightarrow \mathrm{Mn}^{++} \dots(i)
\)
On balancing
\(
\mathrm{MnO}_4^{-}+8 \mathrm{H}^{+}+5 \mathrm{e}^{-} \dots(ii)
\)
\(
\text { Second } \mathrm{h}
\)
\(
\mathrm{C}_2 \mathrm{O}_4^{–} \longrightarrow 2 \mathrm{CO}_2 \dots(iii)
\)
On balancing
\(
\mathrm{C}_2 \mathrm{O}_4^{–} \longrightarrow 2 \mathrm{CO}_2+2 \mathrm{e}^{-} \dots(iv)
\)
On multiplying eqn. (ii) by 5 and (iv) by 2 and then adding we get
\(
2 \mathrm{MnO}_4^{-}+5 \mathrm{C}_2 \mathrm{O}_4^{–}+16 \mathrm{H}^{+} \longrightarrow 2 \mathrm{Mn}^{++}+10 \mathrm{CO}_2+8 \mathrm{H}_2 \mathrm{O}
\)
The above reaction is the balanced chemical reaction. Thus the value of \(x, y\), and \(\mathrm{z}\) is 2,5 , and 16 .
Arrange the following in the order of their decreasing electrode potentials: \(\mathrm{Mg}, \mathrm{K}, \mathrm{Ba}\) and \(\mathrm{Ca}\)
Order of decreasing electrode potentials of \(\mathrm{Mg}, \mathrm{K}, \mathrm{Ba}\) and \(\mathrm{Ca}\) is
\(
\mathrm{Mg}>\mathrm{Ca}>\mathrm{Ba}>\mathrm{K}
\)
It can be explained by their standard reduction potentials.
\(
E_{K+\mid K}^{\ominus}=-2.925
\)
\(
E_{B a^2+\mid B a}^{\ominus}=-2.90
\)
\(
E_{\mathrm{Ca}^{2+} \mid \mathrm{Ca}}^{\ominus}=-2.87
\)
\(
E_{M g^{2+} \mid M g}^{\ominus}=-2.37
\)
Highly negative value of \(\mathrm{E}_{\mathrm{red}}^{\ominus}\) shows the least value of electrode potential.
Given
\(
\mathrm{XNa}_2 \mathrm{HAsO}_3+\mathrm{YNaBrO}_3+\mathrm{ZHCl} \rightarrow \mathrm{NaBr}+\mathrm{H}_3 \mathrm{AsO}_4+\mathrm{NaCl}
\)
The values of \(\mathrm{X}, \mathrm{Y}\) and \(\mathrm{Z}\) in the above redox reaction are respectively :
(c) On balancing the given reaction, we find
\(
3 \mathrm{Na}_2 \mathrm{HAsO}_3+\mathrm{NaBrO}_3+6 \mathrm{HCl}\longrightarrow 6 \mathrm{NaCl}+3 \mathrm{H}_3 \mathrm{AsO}_4+\mathrm{NaBr}
\)
Oxidation state of sulphur in anions \(\mathrm{SO}_3^{2-}, \mathrm{S}_2 \mathrm{O}_4^{2-}\) and \(\mathrm{S}_2 \mathrm{O}_6^{2-}\) increases in the orders :
(c)
\(
\begin{aligned}
& \text { In } \mathrm{SO}_3^{–} \\
& x+3(-2)=-2 ; x=+4 \\
& \text { In } \mathrm{S}_2 \mathrm{O}_4^{–} \\
& 2 x+4(-2)=-2 \\
& 2 x-8=-2 \\
& 2 x=6 ; \quad x=+3 \\
& \text { In } \mathrm{S}_2 \mathrm{O}_6^{2-} \\
& 2 x+6(-2)=-2 \\
& 2 x=10 ; \quad x=+5
\end{aligned}
\)
hence the correct order is
\(
\mathrm{S}_2 \mathrm{O}_4^{–}<\mathrm{SO}_3^{–}<\mathrm{S}_2 \mathrm{O}_6^{–}
\)
Amongst the following, identify the species with an atom in +6 oxidation state:
(d) \(\mathrm{CrO}_2 \mathrm{Cl}_2\)
Let O. No. of \(\mathrm{Cr}=x\)
\(
\begin{aligned}
\therefore \quad & x+2(-2)+2(-1)=0 \\
& x-4-2=0 \\
\therefore \quad & x=+6
\end{aligned}
\)
Which one of the following cannot function as an oxidising agent?
(a) If an electronegative element is in its lowest possible oxidation state in a compound or in free state. It can function as a powerful reducing agent.
e.g. \(\mathrm{I}^{-}\)
A compound of \(\mathrm{Xe}\) and \(\mathrm{F}\) is found to have \(53.5 \%\) of \(\mathrm{Xe}\). What is oxidation number of \(\mathrm{Xe}\) in this compound?
\(
X e=53.5 \% \therefore F=46.5 \%
\)
Relative number of atoms \(\mathrm{Xe}\)
\(
=\frac{53.5}{131.2}=0.4 \text { and } \mathrm{F}=\frac{46.5}{19}=2.4
\)
Simple ratio \(\mathrm{Xe}=1\) and \(\mathrm{F}=6\); Molecular formula is \(\mathrm{XeF}_6\)
Copper becomes green when exposed to moist air for a long period. This is due to:
When a copper vessel is exposed to moist air for a long time it develops a green layer on its surface. Copper corrodes by oxidation in which it reacts with oxygen in the air to form copper oxide.
Copper oxide then combines with carbon dioxide to make copper carbonate, which gives it a green colour. This process is called corrosion of copper.
The green material is a mixture of copper hydroxide \(\left(\mathrm{Cu}(\mathrm{OH})_2\right)\) and copper carbonate \(\left(\mathrm{CuCO}_3\right)\). The following is the reaction:
\(
2 \mathrm{Cu}(\mathrm{s})+\mathrm{H}_2 \mathrm{O}(\mathrm{g})+\mathrm{CO}_2+\mathrm{O}_2 \rightarrow \mathrm{Cu}(\mathrm{OH})_2+\mathrm{CuCO}_3(\mathrm{~s})
\)
Copper(II) carbonate is a blue-green compound.
In the standardization of \(\mathrm{Na}_2 \mathrm{~S}_2 \mathrm{O}_3\) using \(\mathrm{K}_2 \mathrm{Cr}_2 \mathrm{O}_7\) by iodometry, the equivalent weight of \(\mathrm{K}_2 \mathrm{Cr}_2 \mathrm{O}_7\) is
In iodometry, \(\mathrm{K}_2 \mathrm{Cr}_2 \mathrm{O}_7\) liberates \(\mathrm{I}_2\) from iodides ( \(\mathrm{NaI}\) or \(\mathrm{KI})\). Which is titrated with \(\mathrm{Na}_2 \mathrm{~S}_2 \mathrm{O}_3\) solution.
\(
\mathrm{K}_2 \mathrm{Cr}_2 \mathrm{O}_7+\mathrm{I}^{-}+\mathrm{H}^{+} \longrightarrow \mathrm{Cr}^{3+}+\mathrm{I}_2
\)
Here, one mole of \(\mathrm{K}_2 \mathrm{Cr}_2 \mathrm{O}_7\) accepts 6 mole of electrons.
\(
\therefore \text { Equivalent weight }=\frac{\text { molecular weight }}{6}
\)
Consider the reactions:
\(
\begin{aligned}
& \mathrm{H}_2 \mathrm{SO}_3(\mathrm{aq})+\mathrm{Sn}^{4+}(\mathrm{aq})+\mathrm{H}_2 \mathrm{O}(\mathrm{l}) \quad \rightarrow \mathrm{Sn}^{2+}(\mathrm{aq})+\mathrm{HSO}_4^{-}(\mathrm{aq})+3 \mathrm{H}^{+}(\mathrm{aq})
\end{aligned}
\)
Which of the following statements is correct?
\(
\mathrm{H}_2 \stackrel{+4}{\mathrm{SO}_3}(\mathrm{aq})+\mathrm{Sn}^{4+}(\mathrm{aq})+\mathrm{H}_2 \mathrm{O}(1) \longrightarrow \mathrm{Sn}^{2+}(\mathrm{aq})+\stackrel{+6}{\mathrm{HSO}_4^{-}}(\mathrm{aq})+3 \mathrm{H}^{+}
\)
Hence \(\mathrm{H}_2 \mathrm{SO}_3\) is the reducing agent because it undergoes oxidation.
The species that undergoes disproportionation in an alkaline medium are
\(
\mathrm{Cl}_2^0+2 \mathrm{NaOH} \rightarrow \stackrel{-1}{\mathrm{NaCl}}+\stackrel{+1}{\mathrm{NaClO}}+\mathrm{H}_2 \mathrm{O}
\)
\(
\stackrel{+6}{\mathrm{3M}} \mathrm{nO}_4^{–}+2 \mathrm{H}_2 \mathrm{O} \rightarrow 2 \stackrel{+7}{\mathrm{MnO}_4^{-}}+\stackrel{+4}{\mathrm{M}} \mathrm{nO}_2+4 \mathrm{OH}^{-}
\)
\(
\stackrel{+4}{\mathrm{2NO}_2}+\mathrm{H}_2 \mathrm{O} \rightarrow \stackrel{+5}{\mathrm{HNO}_3}+\stackrel{+3}{\mathrm{HNO}_2}
\)
All undergo disproportionation
How many electrons are involved in the following redox reaction?
\(
\mathrm{Cr}_2 \mathrm{O}_7^{2-}+\mathrm{Fe}^{2+}+\mathrm{C}_2 \mathrm{O}_4^{2-} \rightarrow \mathrm{Cr}^{3+}+\mathrm{Fe}^{3+}+\mathrm{CO}_2 \text { (Unbalanced) }
\)
The reaction given is
\(
\mathrm{Cr}_2 \mathrm{O}_7^{2-}+\mathrm{Fe}^{2+}+\mathrm{C}_2 \mathrm{O}_4^{2-} \longrightarrow \mathrm{Cr}^{3+}+\mathrm{Fe}^{3+}+\mathrm{CO}_2\)
\(
\mathrm{Cr}_2 \mathrm{O}_7{ }^{2-} \longrightarrow 2 \mathrm{Cr}^{3+}
\)
On balancing
\(
14 \mathrm{H}^{+}+\mathrm{Cr}_2 \mathrm{O}_7^{2-}+6 \mathrm{e}^{-} \longrightarrow 2 \mathrm{Cr}^{3+}+7 \mathrm{H}_2 \mathrm{O} \dots(i)
\)
\(
\mathrm{Fe}^{2+} \longrightarrow \mathrm{Fe}^{3+}+\mathrm{e}^{-} \dots(ii)
\)
\(
\mathrm{C}_2 \mathrm{O}_4{ }^{2-} \longrightarrow 2 \mathrm{CO}_2+2 \mathrm{e}^{-} \dots(iii)
\)
On adding all the three equations.
\(
\mathrm{Cr}_2 \mathrm{O}_7^{2-}+\mathrm{Fe}^{2+}+\mathrm{C}_2 \mathrm{O}_4^{2-}+14 \mathrm{H}^{+}+3 \mathrm{e}^{-}
\)
\(
\longrightarrow 2 \mathrm{Cr}^{3+}+\mathrm{Fe}^{3+}+2 \mathrm{CO}_2+7 \mathrm{H}_2 \mathrm{O}
\)
Hence the total no. of electrons involved in the reaction =3
\(\mathrm{H}_2 \mathrm{~S}\) acts only as a reducing agent while \(\mathrm{SO}_2\) can act both as a reducing and oxidizing agent because
\(\mathrm{H}_2 \mathrm{~S}\), the oxidation state of \(\mathrm{S}\) is -2 . So it cannot accept more electrons because on accepting 2 electrons \(S\) accquires a noble gas configuration. So, it can acts only as a reducing agent by loosing electron. On the other hand, the oxidation state of \(\mathrm{S}\) in \(\mathrm{SO}_2\) is +4 which is an intermediate oxidation state of sulphur so it can reduce as well oxidise.
Which of the following cannot act as reducing agent?
In all the given compounds oxidation number of non metal is +4 . As \(\mathrm{C}\) belongs to group IV and it is in its maximum oxidation state. So, reduction in oxidation number of nonmetal is not possible only in \(\mathrm{CO}_2\). As we know that reduction is always accompanied by an increase in oxidation number of reducing agent. So, \(\mathrm{CO}_2\) cannot acts as reducing agent among the given choices.
\(
\mathrm{C}_2 \mathrm{H}_6(\mathrm{~g})+\mathrm{nO}_2(\mathrm{~g}) \rightarrow \mathrm{CO}_2(\mathrm{~g})+\mathrm{H}_2 \mathrm{O}(\mathrm{l})
\)
In this equation, the ratio of the coefficients of \(\mathrm{CO}_2\) and \(\mathrm{H}_2 \mathrm{O}\) is
The balanced equation is
\(
2 \mathrm{C}_2 \mathrm{H}_6+7 \mathrm{O}_2 \rightarrow 4 \mathrm{CO}_2+6 \mathrm{H}_2 \mathrm{O} \text {. }
\)
Ratio of the coefficients of \(\mathrm{CO}_2\) and \(\mathrm{H}_2 \mathrm{O}\) is \(4: 6\) or \(2: 3\).
Which substance serves as reducing agent in the following reaction?
\(
14 \mathrm{H}^{+}+\mathrm{Cr}_2 \mathrm{O}_7^{2-}+3 \mathrm{Ni} \longrightarrow 2 \mathrm{Cr}^{3+}+7 \mathrm{H}_2 \mathrm{O}+3 \mathrm{Ni}^{2+}
\)
The compound undergo oxidation itself and reduces others is known as reducing agent. In this reaction \(\mathrm{O}\). \(\mathrm{N}\). of \(\mathrm{Ni}\) changes from 0 to +2 and hence \(\mathrm{Ni}\) acts as a reducing agent.
Which of the following reactions depict the oxidising behaviour of \(\mathrm{H}_2 \mathrm{SO}_4\) :
\(
\begin{aligned}
& \stackrel{-1}{\mathrm{2HI}}+\quad \stackrel{+6}{\mathrm{H}_2} \mathrm{SO}_4 \rightarrow \stackrel{0}{\mathrm{I}}+\stackrel{+4}{\mathrm{SO}_2}+2 \mathrm{H}_2 \mathrm{O} \\
& \text { Oxidised Reduced } \\
& \text { RA } \quad \quad { O A } \\
&
\end{aligned}
\)
Which one of the following reactions involves disproportionation?
A reaction, in which a substance undergoes simultaneous oxidation and reduction, is called disproportionation reaction. In these reactions, the same substance simultaneously acts as an oxidising agent and as a reducing agent. Here \(\mathrm{Cl}\) undergoes simultaneous oxidation and reduction.
\(
2 \mathrm{KOH}+\mathrm{Cl}_2 \rightarrow \mathrm{KCl}+\mathrm{KOCl}+\mathrm{H}_2 \mathrm{O} .
\)
\(
\begin{array}{lll}
& & & & 0 & & -1 & & +1
\end{array}
\)
Point out the correct statement of the following about \(\mathrm{Na}_2 \mathrm{~S}_4 \mathrm{O}_6\).
\(\mathrm{Na}_2 \mathrm{~S}_4 \mathrm{O}_6\) has the structure:
O.N. of two \(\mathrm{S}^*\) atoms are +5 each and that of other two \(\mathrm{S}\) atoms is zero each.
The pair of compounds in which both the metals are in the highest possible oxidation state is
\(\mathrm{CrO}_2 \mathrm{Cl}_2, \mathrm{MnO}_4^{-} ; \mathrm{O} . \mathrm{N}\). of \(\mathrm{Cr}\) and \(\mathrm{Mn}\) are +6 and +7 respectively.
Thiosulphate reacts differently with iodine and bromine in the reactions given below.
\(
\begin{aligned}
2 \mathrm{~S}_2 \mathrm{O}_3^{2-}+\mathrm{I}_2 & \rightarrow \mathrm{S}_4 \mathrm{O}_6^{2-}+2 \mathrm{I}^{-} \\
\mathrm{S}_2 \mathrm{O}_3^{2-}+2 \mathrm{Br}_2+5 \mathrm{H}_2 \mathrm{O} & \rightarrow 2 \mathrm{SO}_4^{2-}+2 \mathrm{Br}^{-}+10 \mathrm{H}^{+}
\end{aligned}
\)
Which of the following statements justifies the above dual behaviour of thiosulphate?
\(
\stackrel{+2}{\mathrm{2S}_2 \mathrm{O}_3^{2-}}(\mathrm{aq})+\stackrel{0}{\mathrm{I}_2}(\mathrm{~s}) \rightarrow \stackrel{2.5}{\mathrm{~S}_4 \mathrm{O}_6^{2-}}(\mathrm{aq})+2 \mathrm{I}^{-}(\mathrm{aq})
\)
\(
\stackrel{+2}{\mathrm{S}_2} \mathrm{O}_3^{2-}(\mathrm{aq})+2 \stackrel{0}{\mathrm{Br}_2}(l)+5 \mathrm{H}_2 \mathrm{O}(l) \rightarrow \stackrel{+6}{\mathrm{2S} \mathrm{O}_4^{2-}}(\mathrm{aq})+4 \mathrm{Br}^{-}(\mathrm{aq})+10 \mathrm{H}^{+}(\mathrm{aq})
\)
Hence, bromine is a stronger oxidising agent than \(I_2\), as it oxidises \(\mathrm{S}\) of \(\mathrm{S}_2 \mathrm{O}_3^{2-}\) to \(\mathrm{SO}_4^{2-}\) whereas \(\mathrm{I}_2\) oxidises it only into \(\mathrm{S}_4 \mathrm{O}_6^{2-}\) ion.
Standard reduction potentials of the half reactions are given below :
\(
\begin{aligned}
& \mathrm{F}_2(\mathrm{~g})+2 \mathrm{e}^{-} \rightarrow 2 \mathrm{~F}^{-}(\mathrm{aq}) ; E^{\ominus}=+2.85 \mathrm{~V} \\
& \mathrm{Cl}_2(\mathrm{~g})+2 \mathrm{e}^{-} \rightarrow 2 \mathrm{Cl}^{-}(\mathrm{aq}) ; E^{\ominus}=+1.36 \mathrm{~V} \\
& \mathrm{Br}_2(\mathrm{l})+2 \mathrm{e}^{-} \rightarrow 2 \mathrm{Br}^{-}(\mathrm{aq}) ; E^{\ominus}=+1.06 \mathrm{~V} \\
& \mathrm{I}_2(\mathrm{~s})+2 \mathrm{e}^{-} \rightarrow 2 \mathrm{I}^{-}(\mathrm{aq}) ; E^{\ominus}=+0.53 \mathrm{~V}
\end{aligned}
\)
The strongest oxidising and reducing agents respectively are:
Higher the value of reduction potential higher will be the oxidising power whereas the lower the value of reduction potential higher will be the reducing power.
A mixture of potassium chlorate, oxalic acid and sulphuric acid is heated. During the reaction which element undergoes maximum change in the oxidation number?
\(
\stackrel{+5}{\mathrm{KClO}_3}+\mathrm{H}_2 \mathrm{C}_2 \mathrm{O}_4+\stackrel{+6}{\mathrm{H}_2 \mathrm{SO}_4} \rightarrow \stackrel{+6}{\mathrm{~K}_2 \mathrm{SO}_4}+\stackrel{-1}{\mathrm{~KCl}}+\mathrm{CO}_2+\mathrm{H}_2 \mathrm{O}
\)
i.e. maximum change in oxidation number is observed in \(\mathrm{Cl}(+5[latex] to -1\))[/latex]
\(\mathrm{Zn}\) gives \(\mathrm{H}_2\) gas with \(\mathrm{H}_2 \mathrm{SO}_4\) and \(\mathrm{HCl}\) but not with \(\mathrm{HNO}_3\) because
Zinc gives \(\mathrm{H}_2\) gas with dil \(\mathrm{H}_2 \mathrm{SO}_4 / \mathrm{HCl}\) but not with \(\mathrm{HNO}_3\) because in \(\mathrm{HNO}_3, \mathrm{NO}_3{ }^{-}\)ion is reduced and give \(\mathrm{NH}_4 \mathrm{NO}_3\), \(\mathrm{N}_2 \mathrm{O}\), \(\mathrm{NO}\) and \(\mathrm{NO}_2\) (based upon the concentration of \(\left.\mathrm{HNO}_3\right)\)
\(
\left[\mathrm{Zn}+\underset{\text { (nearly } 6 \%)}{2 \mathrm{HNO}_3} \longrightarrow \mathrm{Zn}\left(\mathrm{NO}_3\right)_2+2 \mathrm{H}\right] \times 4
\)
\(
\begin{aligned}
& \mathrm{HNO}_3+8 \mathrm{H} \longrightarrow \mathrm{NH}_3+3 \mathrm{H}_2 \mathrm{O} \\
& \mathrm{NH}_3+\mathrm{HNO}_3 \longrightarrow \mathrm{NH}_4 \mathrm{NO}_3
\end{aligned}
\)
\(
4 \mathrm{Zn}+10 \mathrm{HNO}_3 \longrightarrow 4 \mathrm{Zn}\left(\mathrm{NO}_3\right)_2+\mathrm{NH}_4 \mathrm{NO}_3+3 \mathrm{H}_2 \mathrm{O}
\)
\(\mathrm{Zn}\) is on the top position of hydrogen in electrochemical series. So \(\mathrm{Zn}\) displaces \(\mathrm{H}_2\) from dilute \(\mathrm{H}_2 \mathrm{SO}_4\) and \(\mathrm{HCl}+\mathrm{H}_2\)
\(5 \mathrm{~g}\) of \(\mathrm{NaOH}\) was dissolved in deionized water to prepare a \(450 \mathrm{~mL}\) stock solution. What volume (in \(\mathrm{mL})\) of this solution would be required to prepare \(500 \mathrm{~mL}\) of \(0.1 \mathrm{M}\) solution ?
Given : Molar Mass of \(\mathrm{Na}, \mathrm{O}\) and \(\mathrm{H}\) is 23,16 and 1 \(\mathrm{g} \mathrm{mol}^{-1}\) respectively
\(
\begin{aligned}
& M=\frac{5}{40} \times \frac{1000}{450} \\
& M_1 V_1=M_2 V_2 \\
& \left(\frac{5}{40} \times \frac{1000}{450}\right) \times V_1=0.1 \times 500 \\
& V_1=180
\end{aligned}
\)
Which will undergo deprotonation most readily in basic medium?
Most easily deprotonation
The density of a monobasic strong acid (Molar mass \(24.2 \mathrm{~g} \mathrm{~mol}\) ) is \(1.21 \mathrm{~kg} \mathrm{~L}\). The volume of its solution required for the complete neutralization of \(25 \mathrm{~mL}\) of \(0.24 \mathrm{M} \mathrm{NaOH}\) is ______. \(10^{-2} \mathrm{~mL}\) (Nearest integer)
millimole of \(\mathrm{NaOH}=0.24 \times 25\)
\(\begin{aligned} & \therefore \quad \text { millimole of acid }=0.24 \times 25 \\ & \Rightarrow \quad \text { mass of acid }=0.24 \times 25 \times 24.2 \mathrm{mg}\end{aligned}\)
for pure acid,
\(
\mathrm{V}=\frac{\mathrm{W}}{\mathrm{d}} ;(\mathrm{d}=1.21 \mathrm{~kg} / \mathrm{L}=1.21 \mathrm{~g} / \mathrm{ml})
\)
\(
\begin{aligned}
\therefore \mathrm{V}= & \frac{0.24 \times 25 \times 24.2}{1.12} \times 10^{-3} \\
& =120 \times 10^{-3} \mathrm{ml} \\
& =12 \times 10^{-2} \mathrm{ml}
\end{aligned}
\)
An indicator ‘ \(\mathrm{X}\) ‘ is used for studying the effect of variation in concentration of iodide on the rate of reaction of iodide ion with \(\mathrm{H}_2 \mathrm{O}_2\) at room temp. The indicator ‘ \(\mathrm{X}\) ‘ forms blue colored complex with compound ‘ \(A\) ‘ present in the solution. The indicator ‘ \(\mathrm{X}\) ‘ and compound ‘ \(\mathrm{A}\) ‘ respectively are
\(
\mathrm{I}^{-}+\mathrm{H}_2 \mathrm{O}_2 \longrightarrow \underset{\text { (A) }}{\mathrm{I}_2}+\mathrm{H}_2 \mathrm{O}
\)
\(
\mathrm{I}_2+\underset{\text { (Indicator) }}{\mathrm{Starch}} \longrightarrow \text { Blue }
\)
The volume of \(\mathrm{HCl}\), containing \(73 \mathrm{~g} \mathrm{~L}^{-1}\), required to completely neutralise \(\mathrm{NaOH}\) obtained by reacting \(0.69 \mathrm{~g}\) of metallic sodium with water, is _____ \(\mathrm{mL}\). (Nearest Integer)
(Given : molar Masses of \(\mathrm{Na}, \mathrm{Cl}, \mathrm{O}, \mathrm{H}\) are 23, \(35.5,16\) and \(1 \mathrm{~g} \mathrm{~mol}^{-1}\) respectively)
Mole of \(\mathrm{Na}=\frac{0.69}{23}=3 \times 10^{-2}\)
\(
\mathrm{Na}+\mathrm{H}_2 \mathrm{O} \longrightarrow \mathrm{NaOH}+\frac{1}{2} \mathrm{H}_2
\)
By using POAC
Moles of \(\mathrm{NaOH}=3 \times 10^{-2}\)
\(\mathrm{NaOH}\) reacts with \(\mathrm{HCl}\)
No. of equivalent of \(\mathrm{NaOH}=\mathrm{No}\). of equivalent of \(\mathrm{HCl}\)
\(
3 \times 10^{-2} \times 1=\frac{73}{36.5} \times \mathrm{V}(\text { in } \mathrm{L}) \times 1
\)
\(
\mathrm{V}=1.5 \times 10^{-2} \mathrm{~L}
\)
Volume of \(\mathrm{HCl}=15 \mathrm{ml}\).
The number of electrons involved in the reduction of permanganate to manganese dioxide in acidic medium is
The number of electrons involved in the reduction of permanganate to manganese dioxide in acidic medium is 3 .
\(
\stackrel{+7}{\mathrm{MnO}_4^{-}}+4 \mathrm{H}^{+}+3 \mathrm{e}^{-} \longrightarrow \stackrel{+4}{\mathrm{Mn}} \mathrm{{O}_2}+2 \mathrm{H}_2 \mathrm{O}
\)
\(\mathrm{KMnO}_4\) oxidises \(\mathrm{I}\) in acidic and neutral/faintly alkaline solution, respectively to
In acidic medium
\(
2 \mathrm{MnO}_4^{-}+10 \mathrm{I}^{-}+16 \mathrm{H}^{+} \rightarrow 2 \mathrm{Mn}^{2+}+5 \mathrm{I}_2+8 \mathrm{H}_2 \mathrm{O}
\)
In neutral/faintly alkaline solution
\(
2 \mathrm{MnO}_4^{-}+\mathrm{I}^{-}+\mathrm{H}_2 \mathrm{O} \rightarrow 2 \mathrm{MnO}_2+2 \mathrm{OH}^{-}+\mathrm{IO}_3^{-}
\)
\(25 \mathrm{~mL}\) of an aqueous solution of \(\mathrm{KCl}\) was found to require \(20 \mathrm{~mL}\) of \(1 \mathrm{M} \mathrm{~AgNO}_3\) solution when titrated using \(\mathrm{K}_2 \mathrm{CrO}_4\) as an indicator. What is the depression in freezing point of \(\mathrm{KCl}\) solution of the given concentration?
(Nearest integer).
(Given : \(\mathrm{K}_{\mathrm{f}}=2.0 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}\) )
Assume
1) \(100 \%\) ionization and
2) density of the aqueous solution as \(1 \mathrm{~g} \mathrm{~mL}^{-1}\)
At equivalence point, mmole of \(\mathrm{KCl}=\) mmole of \(\mathrm{AgNO}_3=20 \mathrm{~mmole}\)
Volume of solution \(=25 \mathrm{~ml}\)
Mass of solution \(=25 \mathrm{~gm}\)
Mass of solvent
\(
\begin{aligned}
& =25-\text { mass of solute } \\
& =25-\left[20 \times 10^{-3} \times 74.5\right] \\
& =23.51 \mathrm{~gm}
\end{aligned}
\)
\(
\begin{aligned}
& \text { Molality of } \mathrm{KCl}=\frac{\text { mole of } \mathrm{KCl}}{\text { mass of solvent in } \mathrm{kg}} \\
& =\frac{20 \times 10^{-3}}{23.51 \times 10^{-3}}=0.85 \\
& \mathrm{i} \text { of } \mathrm{KCl}=2(100 \% \text { ionisation }) \\
& \Delta \mathrm{T}_{\mathrm{f}}=\mathrm{i} \times \mathrm{K}_{\mathrm{f}} \times \mathrm{m} \\
& =2 \times 2 \times 0.85 \\
& =3.4 \\
& \simeq 3
\end{aligned}
\)
Given below are two statements : one is labelled as Assertion (A) and the other is labelled as Reason (R).
Assertion (A) : An aqueous solution of \(\mathrm{KOH}\) when for volumetric analysis, its concentration should be checked before the use.
Reason (R) : On aging, \(\mathrm{KOH}\) solution absorbs atmospheric \(\mathrm{CO}_2\).
In the light of the above statements, choose the correct answer from the options given below.
\(\mathrm{KOH}\) absorb \(\mathrm{CO}_2\)
So its concentration should be checked.
\(\mathrm{SO}_2 \mathrm{Cl}_2\) on reaction with excess of water results into acidic mixture
\(
\mathrm{SO}_2 \mathrm{Cl}_2+2 \mathrm{H}_2 \mathrm{O} \rightarrow \mathrm{H}_2 \mathrm{SO}_4+2 \mathrm{HCl}
\)
16 moles of \(\mathrm{NaOH}\) is required for the complete neutralisation of the resultant acidic mixture. The number of moles of \(\mathrm{SO}_2 \mathrm{Cl}_2\) used is:
\(
\text { Let } \mathrm{n}\left(\mathrm{SO}_2 \mathrm{Cl}_2\right)=\mathrm{x} \text { moles }
\)
\(
\therefore \mathrm{n}\left(\mathrm{H}_2 \mathrm{SO}_4\right)=\mathrm{x}, \mathrm{n}(\mathrm{HCl})=2 \mathrm{x}
\)
\(
\Rightarrow \mathrm{n}\left(\mathrm{H}^{+}\right)=4 \mathrm{x}
\)
For Neutralisation
\(
\begin{aligned}
& \Rightarrow \mathrm{n}\left(\mathrm{H}^{+}\right)=\mathrm{n}\left(\mathrm{OH}^{-}\right) \\
& \Rightarrow 4 \mathrm{x}=16 \\
& \Rightarrow \mathrm{x}=4
\end{aligned}
\)
In base vs. Acid titration, at the end point methyl orange is present as
Which of the given reactions is not an example of disproportionation reaction?
\(
\stackrel{-1}{2 \mathrm{H}_2 \mathrm{O}_2} \longrightarrow \stackrel{2-}{2 \mathrm{H}_2 \mathrm{O}}+\stackrel{0}{\mathrm{O}_2} \text { : Disproportionation }
\)
\(
\stackrel{+4}{2 \mathrm{NO}_2}+\mathrm{H}_2 \mathrm{O} \rightarrow \stackrel{+5}{\mathrm{HNO}_3}+\stackrel{+3}{\mathrm{HNO}_2}: \text { Disproportionation }
\)
\(
\mathrm{MnO}_4^{-}+4 \mathrm{H}^{+}+3 \mathrm{e}^{-} \rightarrow \mathrm{MnO}_2+2 \mathrm{H}_2 \mathrm{O} \text { : reduction }
\)
\(
\stackrel{+6}{3 \mathrm{MnO}_4^{2-}}+4 \mathrm{H}^{+} \rightarrow 2 \stackrel{+7}{\mathrm{MnO}_4^{-}}+\stackrel{+4}{\mathrm{MnO}_2}+2 \mathrm{H}_2 \mathrm{O}: \text { Disproportionation }
\)
The dark purple colour of \(\mathrm{KMnO}_4\) disappears in the titration with oxalic acid in acidic medium. The overall change in the oxidation number of manganese in the reaction is :
In acidic medium,
\(
\mathrm{MnO}_4^{-} \rightarrow \mathrm{Mn}^{+2}
\)
change in ox. no. \(=5\)
Given below are two statements : one is labelled as Assertion A and the other is labelled as Reason R. Assertion A : Phenolphthalein is a \(\mathrm{pH}\) dependent indicator, remains colourless in acidic solution and gives pink colour in basic medium
Reason \(\mathbf{R}\) : Phenolphthalein is a weak acid. It doesn’t dissociate in basic medium.
In the light of the above statements, choose the most appropriate answer from the options given below :
Phenolphthalein dissociate in basic medium
\(
\mathrm{HPh}(\mathrm{aq}) \rightleftharpoons \mathrm{H}^{+}+\mathrm{Ph}^{-}
\)
\(
\text { (colourless)Â (Pink) }
\)
\(20 \mathrm{~mL}\) of \(0.02 \mathrm{M}\) hypo solution is used for the titration of \(10 \mathrm{~mL}\) of copper sulphate solution, in the presence of excess of \(\mathrm{KI}\)using starch as an indicator. The molarity of \(\mathrm{Cu}^{2+}\) is found to be _____ \(\times 10^{-2} \mathrm{M}\) [nearest integer]
Given : \(2 \mathrm{Cu}^{2+}+4 \mathrm{I}^{-} \rightarrow \mathrm{Cu}_2 \mathrm{I}_2+\mathrm{I}_2\)
\(
\mathrm{I}_2+2 \mathrm{~S}_2 \mathrm{O}_3{ }^{2-} \rightarrow 2 \mathrm{I}^{-}+\mathrm{S}_4 \mathrm{O}_6{ }^{2-}
\)
\(
\mathrm{n}_{\text {eq. }} \text { of } \mathrm{I}_2=\mathrm{n}_{\mathrm{eq}} \text { of } \mathrm{Na}_2 \mathrm{~S}_2 \mathrm{O}_3=20 \times 0.002 \times 1
\)
\(
2 \times \mathrm{n}_{\mathrm{mol}} \text { of } \mathrm{I}_2=0.4
\)
\(
\mathrm{n}_{\mathrm{mol}} \text { of } \mathrm{I}_2=0.2 \mathrm{~m} \mathrm{~mol}
\)
\(
\mathrm{n}_{\mathrm{mol}} \text { of } \mathrm{Cu}^{+2}=0.2 \times 2 \times 10^{-3}
\)
\(
\left[\mathrm{Cu}^{+2}\right]=\frac{0.4 \times 10^{-3}}{10 \times 10^{-3}}=0.04=4 \times 10^{-2}
\)
\(20 \mathrm{~mL}\) of \(0.02 \mathrm{M} \mathrm{K}_2 \mathrm{Cr}_2 \mathrm{O}_7\) solution is used for the titration of \(10 \mathrm{~mL}\) of \(\mathrm{Fe}^{2+}\) solution in the acidic medium.
The molarity of \(\mathrm{Fe}^{2+}\) solution is ______ \(\times 10^{-2} \mathrm{M}\). (Nearest Integer)
Eq. of \(\mathrm{K}_2 \mathrm{Cr}_2 \mathrm{O}_7=\) Eq. of \(\mathrm{Fe}^{2+}\)
\(\Rightarrow\) (Molarity \(\times\) volume \(\times\) n.f) of \(\mathrm{K}_2 \mathrm{Cr}_2 \mathrm{O}_7=\) \(\left(\right.\) molarity \(\times\) volume \(\times\) n.f) of \(\mathrm{Fe}^{2+}\)
\(
\Rightarrow 0.02 \times 20 \times 6=\mathrm{M} \times 10 \times 1
\)
\(
\Rightarrow \mathrm{M}=0.24
\)
\(\Rightarrow\) Molarity \(=24 \times 10^{-2}\)
Given below are two statements : One is labelled as Assertion \(\mathbf{A}\) and the other is labelled as Reason \(\mathbf{R}\) Assertion A : Permanganate titrations are not performed in presence of hydrochloric acid.
Reason R : Chlorine is formed as a consequence of oxidation of hydrochloric acid.
In the light of the above statements, choose the correct answer from the options given below
\(
2 \mathrm{KMnO}_4+16 \mathrm{HCl} \rightarrow 2 \mathrm{MnCl}_2+2 \mathrm{KCl}+8 \mathrm{H}_2 \mathrm{O}+\mathrm{Cl}_2
\)
\(\mathrm{HCl}\) gets oxidised by \(\mathrm{KMnO}_4\) into \(\mathrm{Cl}_2\)
\(2 \mathrm{~L}\) of \(0.2 \mathrm{~M} \mathrm{~H}_2 \mathrm{SO}_4\) is reacted with \(2 \mathrm{~L}\) of \(0.1 \mathrm{~M}\) \(\mathrm{~NaOH}\) solution, the molarity of the resulting product \(\mathrm{Na}_2 \mathrm{SO}_4\) in the solution is _____ millimolar. (Nearest integer).
\(
\mathrm{H}_2 \mathrm{SO}_4+2 \mathrm{NaOH} \rightarrow \mathrm{Na}_2 \mathrm{SO}_4+2 \mathrm{H}_2 \mathrm{O}
\)
\(
\begin{aligned}
& 0.4 \mathrm{~mol} \quad 0.2 \mathrm{~mol} \quad – \\
& 0.3 \mathrm{~mol} \quad-\quad \quad 0.1 \mathrm{~mol}
\end{aligned}
\)
Molarity of \(\mathrm{Na}_2 \mathrm{SO}_4\) is \(\frac{0.1}{4}=0.025 \mathrm{M}\) \(=25 \mathrm{mM}\)
A compound ‘ \(\mathrm{X}\) ‘ is a weak acid and it exhibits colour change at \(\mathrm{pH}\) close to the equivalence point during neutralization of \(\mathrm{NaOH}\) with \(\mathrm{CH}_3 \mathrm{COOH}\). Compound ‘ \(\mathrm{X}\) ‘ exists in ionized form in basic medium. The compound ‘ \(\mathrm{X}\) ‘ is :
Phenolphthalein is weak acid give colour in basic medium.
What is the oxidation number of \(\mathrm{P}\) in \(\mathrm{H}_3 \mathrm{PO}_4\) ?
let the oxidation no. of \(\mathrm{P}\) in \(\mathrm{H}_3 \mathrm{PO}_4\), be \(x\).
\(+1 \quad x \quad -2\)
\(
\mathrm{H}_3 \quad \mathrm{~P} \quad \quad \mathrm{O}_4
\)
Calculate the sum of the oxidation numbers of all the atoms
\(
\begin{gathered}
3(+1)+x+4(-2)=0 \\
=3+x-8=x-5=0 \\
x=+5
\end{gathered}
\)
You cannot copy content of this page